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Motivation

- LLMs are powerful but computationally expensive
- high inference latency and memory cost

- Quantization reduces the precision of the floating point tensors
- theoretically, this reduces the computational cost

- Generally, quantization is performed on entire models

- Quantize some layers only? Yes, shown in LSAQ paper
- can we automatically optimize before inference time?

We want to build a system to autonomously determine which layers to quantize,
to achieve a balance of performance and output quality

- The search space is exponential in size (quantization levels * layers), so our
system needs to be smarter



System Architecture




System Architecture

Model Loader
Loads pre-trained
Qwen/Trinity model

Optimal Configuration
Converge on a good
tradeoff of accuracy

and efficiency

Precision Vector
Generator
Select quantization
level per layer

Testing and Evaluation
Tool
Record accuracy,
memory footprint

Evolutionary Algorithm
Use fitness score to
evolve better precision
configurations

Fitness Score
b s Combine metrics into
single fitness score



System Architecture

1. Model Management Layer:

- Loads the base model, applies per-layer bit-width settings, runs inference, and collects
evaluation metrics.

2. Precision Vector System
- Creates and manages per-layer precision vectors; for example, [8, 4, 4, 16, 8, 8, ..]

3. Evaluation Pipeline

- Run the quantized model on dataset prompts and computes accuracy, latency, and
memory footprint.



System Architecture

4. Fitness Module
- Convert evaluation metrics into a single numerical fithess score for optimization.
5. Evolutionary Search Engine

- Search for Pareto-optimal per-layer precision configurations through evolutionary
optimization

6. Visualization

- Produce plots for Pareto frontier (accuracy vs memory), Fitness progression, Bit-width
heatmaps and 3D trade-off



System Architecture

“Apply these bits”

“Run these prompts”

Return accuracy, latency,
Evolutionary and memory usage
Engine
Generate “Compute a fitness score
a precision from these metrics”

vector

mutate or crossover to form the next
generation

Terminate when generation limit is
reached

Decide which precision vectors survive, —

Model Loader
Load Qwen2.5 and applies layer-wise quantization

Evaluation Pipeline
Run inference on dataset

Fitness Module
Calculate a fithess score

Visualization tools

plots the result




System Architecture

Our components Open-Source Components

- HuggingFace Transformers

- Evolutionary search algorithm
(Model loading and inference)

- Precision vector system

- Custom quantization wrapper around - BitsAndBytes
HF models (4-bit, 8-bit quantization backend)
- Dataset evaluation and timing pipeline

-  Qwen2.5-/B-Instruct
- LLM-based autograder (base LLM)

- Fitness scoring module
- Pareto frontier visualization
- Precision heatmap visualization - Matplotlib/Seaborn

- PyTorch (GPU inference)



System Architecture

Experiments were run on 8x H200

GPUs rented from Vast.ai Precision Vectors (Population)

mm GPU?

LLM Layer LLM Layer LLM Layer
LLM Layer LLM Layer LLM Layer

| | |
Run MATH-50 Run MATH-50 Run MATH-50
Evaluate Acc/Lat Evaluate Acc/Lat Evaluate Acc/Lat
| I |
' !

- 141GB VRAM per GPU

- 428.2 TFLOPS total
performance

- Python multiprocessing library
used for coordinating model
runs and collecting results

Evolutionary Fitness Aggregation + Selection
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Dataset

- MATH-500: 500 problems across
algebra, geometry, number theory,

calculus

- All 500 samples test, no need
for train/validation since we
are using this for evaluation

- Columns are formatted in

LaTeX

problem $

Convert the point $(0,3)$ in rectangular
coordinates to polar coordinates. Enter..

Define \[p = \sum_ik = 13M\infty \fracil}
1k~2% \quad \textfand} \quad q = \sum_{k ..

If $£(x) = \fraci3x-2}ix-21$, what is the
value of $f(-2) +£(-1)+£(0)$? Express you..

How many positive whole-number divisors
does 196 have?

The results of a cross-country team's
training Tun are graphed below. Which..

A regular hexagon can be divided into six
equilateral triangles. If the perimeter o.

What is the smallest positive perfect cube
that can be written as the sum of three..

The set of points $(x,y,z)$ that satisfy \
[2x = 3y = -z\lis a line. The set of poin..

What is the distance, in units, between the
points $(2, -6)$ and $(-4, 3)$? Express..

The expression $2\cdot 3 \cdot 4\cdot 5+1$
is equal to 121, since multiplication is..

What is the least positive integer multiple
of 30 that can be written with only the..

solution v

string

45 3.36k

We have that $r = \sqrtien2 + 372% = 3.$ Also,
if we draw the line connecting the origin and.

We count the number of times $\fraci1}in"31$
appears in the sum \[\sum_{ij = 13"\infty..

$£(-2)+£(-1)+£(0)=\fraci3(-2)-2%1-2-
2%+\fraci3(-1)-23{-1-2¢+\fraci3(0)-2310-..

First prime factorize $196=2"2\cdot772$. The
prime factorization of any divisor of 196..

Evelyn covered more distance in less time than
Briana, Debra and Angela, so her average spee..

The side length of the hexagon is equal to the
side length of one of the equilateral.

The sum of three consecutive integers takes the
form $(k-1)+(k)+(k+1)=3k$ and hence is a..

For the first line, let $t = 2x = 3y = -z.$
Then \[\beginfpmatrix} x \\ y \\ z.

We use the distance formula: \beginfalignx}
\sqrti(2 - (-4))72 + ((-6) - 3)"2} &= \sqrtié.

By the associative property of multiplication,
it doesn't help to insert parentheses that.

Let $M$ be the least positive multiple of 30
that can be written with only the digits © an..

answer

string

1!

\left( 3,

\fraci\piti2}.

P-q

\frac{14}{3%

\textiEvelyn}

42

96M\circ

3\sqrti13}%

2220

subject
string - cl

alues

Precalculus

Intermediate
Algebra

Algebra

Number Theory

Algebra

Prealgebra

Number Theory

Precalculus

Algebra

Prealgebra

Number Theory

- "MATH-50": A subset created by our team for faster evaluation, due to resource

constraints




Dataset Example 1: test/precalculus/807.json

Problem

Convert the point (0,3) in rect-
angular coordinates to polar co-
ordinates. Enter your answer in
the form (r,0), where » > 0 and

0<6<2m.

Solution
We have that r = v02 4+ 32 = 3.

Also, if we draw the line connect-
ing the origin and (0, 3), this line
makes an angle of § with the pos-
itive z-axis.

Therefore, the polar coordinates

(33)
are 5 )|

Answer:
(3, n/2)

Subject:
Precalculus

Level:
2



Dataset Example 2: test/number_theory/515.json

Problem Solution

What is the smallest positive per-f§The sum of three consecutive inte-
fect cube that can be written as thefjgers takes the form (k—1)+ (k) +
sum of three consecutive integers? §(k+1) = 3k and hence is a multiple
of 3. Conversely, if a number n is
a multiple of 3, then n/3 — 1, n/3,
and n/3 4+ 1 are three consecutive

integers that sum to give n. There-
fore, a number is a sum of three
consecutive integers if and only if
it is a multiple of 3. The small-
est positive perfect cube that is a

multiple of 3 is 3% =[27].

Answer:
27

Subject:
Number Theory

Level:
3



Dataset Example 3: test/intermediate_algebra/1197.json

Problem Solution

Let p(x) be a pOlynomial Of degree Let g(x) = (* — 1)p(x) — 2. Then g(x) has degree 7, and g(n) = 0 for n = 2, 3,

4, ..., 7, so
() = (az +b)(z —2)(x —3) -+ (x—=T)
5 such that p————TY
(12 = 1)p(1) = 1 = —1. Setting z = 1 in the equation|

q(1) =720(a + b),

t q(—1) = ((=1)> = Dp(=1) + 1 = 1. Setting x = —1 in the
equation above, we get

. q(—1) = 20160(—a + b),
forn=2,3,4,...,7. Find p(8). | o

5160+ Solving for a and b, we find a = and b =

29 __3_
10320 1480
3
. N —3) (2 —T
@ 448()) (z—=2)(x—3) (=17
(292 + 27)(x — 2)(x — 3) -
40320
In particular,
(29-8427)(6)(5)--- (1) 37

8) = —
a(®) 10320

q8)+8 | ¢
82-1

p(8) =

Answer:
3/56

Subject:
Intermediate Algebra

Level:
5



Dataset Example 4: test/geometry/434.json

Problem

BC is parallel to the segment
through A, and AB = BC. What
is the number of degrees repre-
sented by 7?7

A
124° ?i B2
B C

Solution

Angle ZBCA and the angle we're trying to measure are alternate

at C' and A. ThPIPfOlP ZBA .
The sum of the three angles at 4 is 180°, since they form a straight
angle. Therefore,

124 4+ z + 2 = 180,

which we can solve to obtain z =

124° ‘ x°
B C

Answer:
28

Subject:
Geometry

Level:
1



Dataset Example 5: test/counting_and_probability/134.json

Problem

In how many ways can 8 people sit
around a round table if 3 of the
people — Pierre, Rosa, and Thomas
— all want to sit together? (Two

seatings are considered the same if
one is a rotation of the other.)

Solution

First choose three consecutive
seats for Pierre, Rosa, and
Thomas. It doesn’t matter which
three consecutive seats that we
choose, since any three such seats
can be rotated to any other such
seats. Once the three seats are

chosen, there are 3! ways to seat
the three friends there. The other
five seats are for the other five
people, so there are 5! ways to

seat them there. The answer is

3! x 5! =[720]

Answer:
720

Subject:
Counting and
Probability

Level:
4
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Experimental Setup

Environment: Vast.ai, Pace/ICE

GPU: 8x H200 (\Vast.ai), 2x H200 (Pace/ICE)

Model: Qwen2.5-7B-Instruct, Trinity-Mini, Mistral-7B
Datasets: MATH-50

Quantization Levels: 4, 8, 16 bits

Metrics: Accuracy, inference latency, VRAM usage, loss


http://vast.ai
http://vast.ai

Experiment Screenshots (All models)
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Experimental Result #1

To convert the point from rectangular (Cartesian) coordinates (x,y) = (0, 3) to polar coordinates (r, 8),
we use the following formulas:

1. The distance from the origin (radius), r, is given by:

e test/precalculus/807.json pp—

L answer iS (3, T[/2) 2. The angle @ is given by:

6 = arctan (Z)
5z

However, we need to adjust this value based on the quadrant of the point.

Let's calculate these values for our point (0, 3).

e fully int8 quantized model .
tep 1: Calculate r
produces the correct TS o3
answer Step 2: Calculate 0

For the point (0, 3), since x = 0 and y > 0, the point lies on the positive y-axis. Therefore, the angle 6 is

g radians (or 90 degrees).

Thus, the polar coordinates for the pOi 1t (0, 3) are:
r.0) = (3
(T, 0) @B 2)

Final Answer: (3, Tt/2)



Experimental Result #2

e test/intermediate_algebra/1
994 json
e answerisp-q

e fully int8 quantized model
produces the correct
answer

n=2j=1

1
The inner sum is simply the sum of ;3 taken n — 1 times:
n=—1
1 1 n-1
R e
j=1

Therefore, the sum S becomes:

-1
We can split the fraction "T into two simpler fractions:

n—-1_n il il 1

n3 7 n e

So, the sum S can be written as:

o
N 1
=2 (z=)
n=2
We can separate this into two sums:

1

n2
2 n

1

S= 3

Ns
Ns

n 2

1 1
Notice that E:’Z 272 is just the series for p starting from n = 2, which is p — 1. Similarly, E:Z 273 is just
the series for g starting from n = 2, whichis g — 1.

Thus, we have:
S=@-D-@-D=p-q.
o oo 1
Therefore, the sum Zi —12p-1 G+ interms of p and g is:

P—q.



Experimental Result #3

e test/algebra/1072.json
e answeris 243/625

e fully int8 quantized model
doesn't produce an answer

e half quantized model
produces the wrong answer

e fully unquantized model
produces the right answer

Now, calculate (2)7:

Substitute this back into the expression for ag:

125 2187  125-2187

9%~ 79 78125  9.78125
Simplify the numerator and the denominator:
125-2187 = 273375
9-78125 = 703125
Thus,

273375
% = 703125

Simplify the fraction by finding the greatest common divisor (GCD) of 273375 and 703125. The GCD is
375:

273375 +375 _ 729
703125+ 375 1875

Further simplify by dividing both the numerator and the denominator by their GCD, which is 27:

72927 27 27 27 21 27
1875+ 27 694444  69.4444  69.4444  69.4444  69.4444

Finally, the simplified form is:

27 27 27 27
69.4444 ~ 69.4444  69.4444  69.4444

Therefore, the eighth term of the sequence is:

27
69.4444



Model Selection

These preliminary experimental results show that the evaluated model is a good
fit for our project

e The VRAM consumption is low enough to load multiple times on one GPU
o This is necessary due to how our system produces quantized models
e Different quantization levels produce measurably different accuracy

o Some models, though around the same size, produce extremely poor accuracy
o These models would not show any meaningful results



Measurement Result #1 (QWEN): Loss vs. Memory

Pareto Trade-off: Loss vs Memory

e Total of 160 models were tested

o
w
o

o
W
o

e Steep downward slope on the
graph

o Accuracy increases with very slight

m
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£

increases in memory
o Pareto frontier lies entirely on
low-memory side ' All Points

. Pareto Frontier
e Higher memory budgets do not 8 o W 1L 1

Memory (GB)

guarantee better accuracy



Measurement Result #1 (Trinity): Loss vs. Memory

Pareto Trade-off: Loss vs Memory
e Steep horizontal slope on the graph : All Points

® Pareto Frontier

o Accuracy increases with very slight
increases in memory
o Pareto frontier lies entirely on low-loss
side
e Trinity: Built for math purposes,
causing conflict with dataset

o  But still evident decrease in loss,

correlating to better/more accurate 100 125 150 17.5 20.0 225

responses Memory (GB)




Measurement Result #1 (Orchestrator) : Loss vs. Memory

e Due to some constraints, the evolutionary
search was terminated early

e Lossis not good, regardless of quantization

e Within the explored range, loss appears
largely insensitive to memory, suggesting
that performance may be more constrained
by model

e This makes sense, as math is not what this

model is designed for
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Pareto Trade-off; Loss vs Memory

All Points
® Pareto Frontier
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Memory (GB)



Measurement Result #1 (Mistral) : Cross Entropy Loss
vs. Memory

Pareto Trade-off: Loss vs Memory

e In this result, quantization did not Al Points

® Pareto Frontier

seem to help with loss (better large
models)
e Distinct groups of memory with

different sizes

8 10 12 14
Memory (GB)




Measurement Result #2 (QWEN): Loss vs. Latency

Pareto Trade-off: Cross Entropy Loss vs Latency

oo All Points
o ® Pareto Frontier

e Steep downward slope, but with - 0.250
8 0.225

slight curve outward -
> 0.200

o Loss decreases as latency increases 2 0.175
o .

(very slightly)
e In our experimental results, the

speed increase from quantization
did not have a significant effect on | o o

Latency (ms)
trade off




Measurement Result #2 (Trinity): Loss vs. Latency

Pareto Trade-off: Cross Entropy Loss vs Latency

All Points ¢

o Downward Slope ® Pareto Frontier

o Loss decreases as latency increases

e Clear view of low latency and cross

entropy loss for Trinity

0.5

o  Once again reliant on pretraining of the
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Measurement Result #2 (Orchestrator): Loss vs. Latency

e Most configurations operate within
a very narrow low-latency range

e Cross entropy loss shows relatively
high variability

e The single high-latency point acts

as an outlier
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Measurement Result #2 (Mistral): Loss vs. Latency

Pareto Trade-off: Cross Entropy Loss vs Latency

e Vertical line, all models centered ‘ All Points

® Pareto Frontier

around about 25 ms latency
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Measurement Result #3 (All models): Loss vs. Memory vs. Latency
e Best pretrained models lie in o Farco ronter

low-latency, low-memory corner

o Best configuration are faster and

smaller, implying stronger quantization

e High-memory models consistently
have higher latency without

significant accuracy benefit




Measurement Result #4 (Qwen): Bit Allocation Heatmap

Per-Layer Bit Allocation Heatmap
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Measurement Result #4 (Trinity): Bit Allocation Heatmap

Per-Layer Bit Allocation Heatmap
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Measurement Result #4 (Orchestrator): Bit Allocation Heatmap
e Most models do not have

uniform bit widths

Bit Width

o However, certain layers

consistently get assigned
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Measurement Result #4 (Mistral): Bit Allocation
Heatmap

Per-Layer Bit Allocation Heatmap
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Project Summary




Key Contributions

Successfully created an automated tool that finds pareto-optimal layer
quantization configurations for LLMs under arbitrary memory and latency
constraints.

33333
33333

us: 22.3411201313138

33333

us: 22.3411201313138

33333
33333

us: 22.3411201313138

LUT Table For Latency Estimation

Created a LUT table to enable fast, hardware-aware
latency estimation.

Parallel GPU Evaluation

Parallel Evaluation across multiple GPUs for faster
processing

Accurate VRAM Computation

Computed VRAM usage from parameter count x bit
width

Pareto Frontier Visualization

Created and generated 2D/3D pareto frontier plots
for easy referencing



[.essons Learned

Accuracy vs Cross Entropy Evaluation

e Cross entropy loss - measures how much the model’s next-token predictions diverge
from Math-500 gold solutions.

e Accuracy Metric - Directly computes correctness to see if generated answer is correct
or not

Why Cross Entropy? - Sensitive to small perturbations in quantized weights providing
smooth, stable optimization

Why Accuracy Performed Better - The model wasn't trained on Math-500, token level cross
entropy loss produced noisy comparisons. There was really bad convergence overall.
Accuracy offered a more clear ranking of “better vs worse” models.



Lessons Learned - Preliminary Results (QWEN)

Pareto Trade-off: Cross Entropy Loss vs Latency
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Note: You can't see the non-pareto points because they cluster around the Pareto Frontier!



Lessons Learned - Preliminary Results (QWEN)

“n_all": 646.0, “bits_all": { “objectives_frontier": {
“n_frontier": 81.0, “counts": { “latency_ms": {
“frontier_ratio": 0.12538699690402477, "4": 70436, "count:: 69.0
"objectives_all": { "8": 31834 [r—
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"count": 69.0,
“min": 8.36955105460832,
"p25": 8.407168718608318,
"median": 9.07914864820832,
"p75": 9.07914864820832,
"max": 9.07914864820832,
“mean": 8.87077684122861,
"std": 0.315163011811839
3,
"memory_gb": {
“count": 646.0,
"min": 3.928752128,
"p25": 4.421451776,
“median": 4.882038784,
"p75": 10.676994048,
"max": 12.497321984,
"mean": 7.07940405260681,

}
“fractions": {
"4": 0.556296202691603,
"8": 0.251421621280091,
"16": 0.19228217602830605
i1
},
"bits_frontier": {
“counts": {
"4": 6621,
"8": 5538,
"16": 3717
}
"fractions": {
"4": 0.4170445956160242,
"8": 0.3488284202569917,
"16": 0.23412698412698413

"p25": 8.407168718608318,
"median": 9.07914864820832,
: 9.07914864820832,
9.07914864820832,
: 8.87077684122861,
"std": 0.315163011811839
+
"memory_gb": {
"count": 81.0,
"min": 3.928752128,
"p25": 4.296671232,
"median": 11.024728064,
"p75": 11.024728064,
"max": 11.024728064,
"mean": 8.322950637037035,
"std": 3.3449665092870706
+
"val_loss": {

, std": 3.006206082828667 } wcount®: 81.0,
woal togsms § % ) S “min": 0.5109182275003857,
R '646 . per_tavelailas "p25": 0.5109182275003857,
SONILESE0R0: 1 “median”: 0.5109182275003857,
"min": 0.5109182275003857, "layer": 0,
1 0.5256021411882507,
"p25": 0.5309303532595988, "mean": 8.910216718266254,
0.6432530486363405,
“median”: 0.5514976450690516, "std": 5.703835080711555,
0.5360111221675021,
8.6 8.7 8.8 “p75": 0.6375011700287736, thist": { R
" " 0.6512670234243483 ugts 3m1 std": 0.04862506209113528
max™: . H »
Latency (ms) ' ¥
“mean”: 0.5792923453484726, “g": 46, 5
"std": 0.05284727858420227 "16": 249 !
} ¥
}, },

Summary stats demonstrate that quantization is indeed happening and frontier had higher precision overall.



More L.essons L.earned

Hardware-Aware ML
Model Engineering

Input Weights Output
n
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e Predicting memory costs
from GEMM kernels

e  Working with memory
bandwidth and quantization
overhead

e GPU profiling with warm-up
runs, CUDA synchronization,
and caching

+

¥

Understanding Layer
Quantization

i
"layer": 15,
mean": 5.142857142857143,

"""""" : 10.56,
std": 5.8030139952072695, "std": 2.4511554959459674,
hist": { EhistU=N{
"a": 72, "4"; 135,
S il 161G 5
"16": 92 "16": 5
}
3

e Understanding which

groupings of layers are
quantization sensitive
through evolutionary testing

3 _init__py

[ bnb_quantize.py

k]

0O

o

[ data_models.py

(k]

Developing an LLM
Evaluation Pipeline

[ frontier.py

[ group_ties.py

cache.py [ logging_utils.py
config.py O lutpy
core_evolutionary.py [ main_search.py

[ objectives.py

evaluator.py [ utils.py

GPU parallelism

Cache aware

Stateful - not needing to load
a new model every time due
to high latency costs




Future Improvements

e Pluggable APIs - Currently our model requires a lot of extra code
o bitsandbytes currently requires its own file for layer quantization
m Potentially could create an API that allows you to pass in a quantization
scheme (1 bit, 2 bit, etc).
o Additional APIs for figures and results
m Adding an APl where you input memory or latency budgets and get returned
a clear quantization scheme
e Limited generalizability across diverse model architectures
o Applying the method to new models requires substantial model-specific
implementation
e Clearer results - graphs can tell a story but there must be a better way to present the
different layer schemes.



README Explanation

e Project Overview & Technical Stack: Describes AutoLLMTuner as an evolutionary

algorithm framework for LLM quantization,
o  Detailed information about datasets (MATH-500), performance measurement tools (BitsAndBytes, hardware
benchmarking, caching), and external resources (Qwen2.5-7B model, frameworks)

e Setup & Usage: Provides installation requirements, configuration files explanation, and
instructions for running experiments
o  Hardware benchmarking, evolutionary search, HPC execution, visualization generation
e Experimental Results & Analysis: Comprehensive analysis of test runs showing that
optimal solutions achieve 94% accuracy at 5.51 GB memory (vs 12.49 GB baseline),
o  Detailed performance metrics, Pareto analysis, bit allocation strategies, and visualization explanations
e Code Architecture: Documents the project structure with core components (evolutionary

algorithm, quantization backend, visualization tools)
o  Explains how evaluation, frontier computation, and results generation are integrated throughout the pipeline



Open Source References

e HuggingFace Transformers
(Model loading and inference) - https://huggingface.co/docs/transformers/en/index

e HuggingFace MATHS00
(Dataset for testing) - https://huggingface.co/datasets/HuggingFaceH4/MATH-500

e BitsAndBytes
(4-bit, 8-bit quantization backend) - https://huggingface.co/docs/bitsandbytes/en/index

e Qwen2.5-7B-Instruct
(base LLM) - https://huggingface.co/Qwen/Qwen2.5-7B-Instruct

e PyTorch (GPU inference) - https://pytorch.org/
e Matplotlib - https://matplotlib.org/
e Seaborn - https://seaborn.pydata.org/
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