
Dynamic Precision
Scheduling (DPS) for

Efficient LLM Inference

Leonid Alexeyev, Jonathan Huang,
Sujin Lee, Darin Mao, Devam Shrivastava

Table of Contents

2 System Architecture

1 Motivations

Dataset

4 Experimental Results

5 Project Summary

6 Q&A

3

Motivation

- LLMs are powerful but computationally expensive
- high inference latency and memory cost

- Quantization reduces the precision of the floating point tensors
- theoretically, this reduces the computational cost

- Generally, quantization is performed on entire models
- Quantize some layers only? Yes, shown in LSAQ paper

- can we automatically optimize before inference time?

We want to build a system to autonomously determine which layers to quantize,
to achieve a balance of performance and output quality

- The search space is exponential in size (quantization levels ^ layers), so our
system needs to be smarter

System Architecture

System Architecture

Model Loader
Loads pre-trained

Qwen/Trinity model

Precision Vector
Generator

Select quantization
level per layer

Testing and Evaluation
Tool

Record accuracy,
memory footprint

Fitness Score
Combine metrics into
single fitness score

Evolutionary Algorithm
Use fitness score to

evolve better precision
configurations

Optimal Configuration
Converge on a good
tradeoff of accuracy

and efficiency

System Architecture

1. Model Management Layer:

- Loads the base model, applies per-layer bit-width settings, runs inference, and collects
evaluation metrics.

2. Precision Vector System

- Creates and manages per-layer precision vectors; for example, [8, 4, 4, 16, 8, 8, …]

3. Evaluation Pipeline

- Run the quantized model on dataset prompts and computes accuracy, latency, and
memory footprint.

4. Fitness Module

- Convert evaluation metrics into a single numerical fitness score for optimization.

5. Evolutionary Search Engine

- Search for Pareto-optimal per-layer precision configurations through evolutionary
optimization

6. Visualization

- Produce plots for Pareto frontier (accuracy vs memory), Fitness progression, Bit-width
heatmaps and 3D trade-off

System Architecture

Data Flow

System Architecture

Evolutionary
Engine

Generate
a precision

vector

Model Loader
Load Qwen2.5 and applies layer-wise quantization

Evaluation Pipeline
Run inference on dataset

“Apply these bits”

“Run these prompts”

Visualization tools
plots the result

Fitness Module
Calculate a fitness score

Return accuracy, latency,
and memory usage

“Compute a fitness score
from these metrics”

1.

2.

3.

4.
Decide which precision vectors survive,

mutate or crossover to form the next
generation

5. Terminate when generation limit is
reached

Data Flow

System Architecture

Our components

- Evolutionary search algorithm
- Precision vector system
- Custom quantization wrapper around

HF models
- Dataset evaluation and timing pipeline
- LLM-based autograder
- Fitness scoring module
- Pareto frontier visualization
- Precision heatmap visualization

Open-Source Components

- HuggingFace Transformers
 (Model loading and inference)

- BitsAndBytes
 (4-bit, 8-bit quantization backend)

- Qwen2.5-7B-Instruct
(base LLM)

- PyTorch (GPU inference)

- Matplotlib/Seaborn

System Architecture

Experiments were run on 8x H200
GPUs rented from Vast.ai

- 141GB VRAM per GPU
- 428.2 TFLOPS total

performance
- Python multiprocessing library

used for coordinating model
runs and collecting results

Evolutionary Engine

Precision Vectors (Population)

GPU 0

Run MATH-50
Evaluate Acc/Lat

LLM Layer

GPU …

LLM Layer

LLM Layer

GPU 7

LLM Layer

LLM Layer

Evolutionary Fitness Aggregation + Selection

Run MATH-50
Evaluate Acc/Lat

Run MATH-50
Evaluate Acc/Lat

LLM Layer

Dataset

Dataset

- MATH-500: 500 problems across
algebra, geometry, number theory,
calculus

- All 500 samples test, no need
for train/validation since we
are using this for evaluation

- Columns are formatted in
LaTeX

- "MATH-50": A subset created by our team for faster evaluation, due to resource
constraints

Dataset Example 1: test/precalculus/807.json

Problem Solution Answer:
(3, π/2)

Subject:
Precalculus

Level:
2

Dataset Example 2: test/number_theory/515.json

Problem Solution Answer:
27

Subject:
Number Theory

Level:
3

Dataset Example 3: test/intermediate_algebra/1197.json

Problem Solution Answer:
3/56

Subject:
Intermediate Algebra

Level:
5

Dataset Example 4: test/geometry/434.json

Problem Solution Answer:
28

Subject:
Geometry

Level:
1

Dataset Example 5: test/counting_and_probability/134.json

Problem Solution Answer:
720

Subject:
Counting and
Probability

Level:
4

Experimental Results

Experimental Setup

● Environment: Vast.ai, Pace/ICE
● GPU: 8x H200 (Vast.ai), 2x H200 (Pace/ICE)
● Model: Qwen2.5-7B-Instruct, Trinity-Mini, Mistral-7B
● Datasets: MATH-50
● Quantization Levels: 4, 8, 16 bits
● Metrics: Accuracy, inference latency, VRAM usage, loss

http://vast.ai
http://vast.ai

Experiment Screenshots (All models)

status of
8 GPUs

generation
progress

Experimental Result #1

● test/precalculus/807.json
● answer is (3, π/2)

● fully int8 quantized model
produces the correct
answer

Experimental Result #2

● test/intermediate_algebra/1
994.json

● answer is p - q

● fully int8 quantized model
produces the correct
answer

Experimental Result #3

● test/algebra/1072.json
● answer is 243/625

● fully int8 quantized model
doesn't produce an answer

● half quantized model
produces the wrong answer

● fully unquantized model
produces the right answer

Model Selection

These preliminary experimental results show that the evaluated model is a good
fit for our project

● The VRAM consumption is low enough to load multiple times on one GPU
○ This is necessary due to how our system produces quantized models

● Different quantization levels produce measurably different accuracy
○ Some models, though around the same size, produce extremely poor accuracy
○ These models would not show any meaningful results

● Total of 160 models were tested
● Steep downward slope on the

graph
○ Accuracy increases with very slight

increases in memory
○ Pareto frontier lies entirely on

low-memory side

● Higher memory budgets do not
guarantee better accuracy

Measurement Result #1 (QWEN): Loss vs. Memory

● Steep horizontal slope on the graph
○ Accuracy increases with very slight

increases in memory
○ Pareto frontier lies entirely on low-loss

side

● Trinity: Built for math purposes,
causing conflict with dataset

○ But still evident decrease in loss,
correlating to better/more accurate
responses

Measurement Result #1 (Trinity): Loss vs. Memory

● Due to some constraints, the evolutionary

search was terminated early

● Loss is not good, regardless of quantization

● Within the explored range, loss appears

largely insensitive to memory, suggesting

that performance may be more constrained

by model

● This makes sense, as math is not what this

model is designed for

Measurement Result #1 (Orchestrator) : Loss vs. Memory

Measurement Result #1 (Orchestrator): Loss vs. Memory

● Loss values remain nearly constant across most memory ranges

● Only marginal accuracy gains are achieved despite increasing memory

● Pareto frontier appears at the highest memory point with minimal loss improvement

● This indicates that the Orchestrator is not highly sensitive to memory scaling

● Performance is largely bounded by model–task compatibility rather than memory
capacity

● In this result, quantization did not

seem to help with loss (better large

models)

● Distinct groups of memory with

different sizes

Measurement Result #1 (Mistral) : Cross Entropy Loss
vs. Memory

Measurement Result #1 (Orchestrator): Loss vs. Memory

● Loss values remain nearly constant across most memory ranges

● Only marginal accuracy gains are achieved despite increasing memory

● Pareto frontier appears at the highest memory point with minimal loss improvement

● This indicates that the Orchestrator is not highly sensitive to memory scaling

● Performance is largely bounded by model–task compatibility rather than memory
capacity

● Steep downward slope, but with

slight curve outward
○ Loss decreases as latency increases

(very slightly)

● In our experimental results, the

speed increase from quantization

did not have a significant effect on

trade off

Measurement Result #2 (QWEN): Loss vs. Latency

● Downward slope
○ Loss decreases as latency increases

● Clear view of low latency and cross

entropy loss for Trinity
○ Once again reliant on pretraining of the

model

Measurement Result #2 (Trinity): Loss vs. Latency

● Most configurations operate within

a very narrow low-latency range

● Cross entropy loss shows relatively

high variability

● The single high-latency point acts

as an outlier

Measurement Result #2 (Orchestrator): Loss vs. Latency

● Vertical line, all models centered

around about 25 ms latency

● Some outliers of higher latency for

lower cross entropy than main

group

Measurement Result #2 (Mistral): Loss vs. Latency

● Best pretrained models lie in

low-latency, low-memory corner
○ Best configuration are faster and

smaller, implying stronger quantization

● High-memory models consistently

have higher latency without

significant accuracy benefit

Measurement Result #3 (All models): Loss vs. Memory vs. Latency

● Most models do not have

uniform bit widths
○ However, certain layers

consistently get assigned

similar bit sizes

● Best-performing models use

non-uniform precision

vectors

Measurement Result #4 (Qwen): Bit Allocation Heatmap

● Most models do not have

uniform bit widths
○ However, certain layers

consistently get assigned

similar bit sizes

● Best-performing models use

non-uniform precision

vectors

Measurement Result #4 (Trinity): Bit Allocation Heatmap

● Most models do not have

uniform bit widths
○ However, certain layers

consistently get assigned

similar bit sizes

● Best-performing models use

non-uniform precision

vectors

Measurement Result #4 (Orchestrator): Bit Allocation Heatmap

● Most models do not have

uniform bit widths
○ However, certain layers

consistently get assigned

similar bit sizes

● Best-performing models use

non-uniform precision

vectors

Measurement Result #4 (Mistral): Bit Allocation
Heatmap

Project Summary

Key Contributions

Successfully created an automated tool that finds pareto-optimal layer
quantization configurations for LLMs under arbitrary memory and latency
constraints.

LUT Table For Latency Estimation
Created a LUT table to enable fast, hardware-aware
latency estimation.

Parallel GPU Evaluation
Parallel Evaluation across multiple GPUs for faster
processing

Accurate VRAM Computation
Computed VRAM usage from parameter count x bit
width

Pareto Frontier Visualization
Created and generated 2D/3D pareto frontier plots
for easy referencing

Lessons Learned

Accuracy vs Cross Entropy Evaluation

● Cross entropy loss - measures how much the model’s next-token predictions diverge
from Math-500 gold solutions.

● Accuracy Metric - Directly computes correctness to see if generated answer is correct
or not

Why Cross Entropy? - Sensitive to small perturbations in quantized weights providing
smooth, stable optimization

Why Accuracy Performed Better - The model wasn’t trained on Math-500, token level cross
entropy loss produced noisy comparisons. There was really bad convergence overall.
Accuracy offered a more clear ranking of “better vs worse” models.

Lessons Learned - Preliminary Results (QWEN)

Note: You can’t see the non-pareto points because they cluster around the Pareto Frontier!

Lessons Learned - Preliminary Results (QWEN)

Summary stats demonstrate that quantization is indeed happening and frontier had higher precision overall.

More Lessons Learned

Hardware-Aware ML
Model Engineering

● Predicting memory costs
from GEMM kernels

● Working with memory
bandwidth and quantization
overhead

● GPU profiling with warm-up
runs, CUDA synchronization,
and caching

Understanding Layer
Quantization

● Understanding which
groupings of layers are
quantization sensitive
through evolutionary testing

Developing an LLM
Evaluation Pipeline

● GPU parallelism
● Cache aware
● Stateful - not needing to load

a new model every time due
to high latency costs

Future Improvements

● Pluggable APIs - Currently our model requires a lot of extra code
○ bitsandbytes currently requires its own file for layer quantization

■ Potentially could create an API that allows you to pass in a quantization
scheme (1 bit, 2 bit, etc).

○ Additional APIs for figures and results
■ Adding an API where you input memory or latency budgets and get returned

a clear quantization scheme
● Limited generalizability across diverse model architectures

○ Applying the method to new models requires substantial model-specific
implementation

● Clearer results - graphs can tell a story but there must be a better way to present the
different layer schemes.

README Explanation

● Project Overview & Technical Stack: Describes AutoLLMTuner as an evolutionary
algorithm framework for LLM quantization,

○ Detailed information about datasets (MATH-500), performance measurement tools (BitsAndBytes, hardware
benchmarking, caching), and external resources (Qwen2.5-7B model, frameworks)

● Setup & Usage: Provides installation requirements, configuration files explanation, and
instructions for running experiments

○ Hardware benchmarking, evolutionary search, HPC execution, visualization generation
● Experimental Results & Analysis: Comprehensive analysis of test runs showing that

optimal solutions achieve 94% accuracy at 5.51 GB memory (vs 12.49 GB baseline),
○ Detailed performance metrics, Pareto analysis, bit allocation strategies, and visualization explanations

● Code Architecture: Documents the project structure with core components (evolutionary
algorithm, quantization backend, visualization tools)

○ Explains how evaluation, frontier computation, and results generation are integrated throughout the pipeline

Open Source References

● HuggingFace Transformers
 (Model loading and inference) - https://huggingface.co/docs/transformers/en/index

● HuggingFace MATH500

(Dataset for testing) - https://huggingface.co/datasets/HuggingFaceH4/MATH-500

● BitsAndBytes
 (4-bit, 8-bit quantization backend) - https://huggingface.co/docs/bitsandbytes/en/index

● Qwen2.5-7B-Instruct
(base LLM) - https://huggingface.co/Qwen/Qwen2.5-7B-Instruct

● PyTorch (GPU inference) - https://pytorch.org/

● Matplotlib - https://matplotlib.org/

● Seaborn - https://seaborn.pydata.org/

Q&A

Thank You!!

