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Motivation

- LLMs are powerful but computationally expensive
- high inference latency and memory cost

- Quantization reduces the precision of the floating point tensors
- theoretically, this reduces the computational cost

- Generally, quantization is performed on entire models
- Quantize some layers only? Yes, shown in LSAQ paper

- can we automatically optimize before inference time?

We want to build a system to autonomously determine which layers to quantize, 
to achieve a balance of performance and output quality

- The search space is exponential in size (quantization levels ^ layers), so our 
system needs to be smarter



System Architecture



System Architecture

Model Loader
Loads pre-trained 

Qwen/Trinity model

Precision Vector 
Generator

Select quantization 
level per layer 

Testing and Evaluation 
Tool

Record accuracy, 
memory footprint

Fitness Score
Combine metrics into 
single fitness score

Evolutionary Algorithm
Use fitness score to 

evolve better precision 
configurations 

Optimal Configuration
Converge on a good 
tradeoff of accuracy 

and efficiency



System Architecture

1. Model Management Layer:

- Loads the base model, applies per-layer bit-width settings, runs inference, and collects 
evaluation metrics.

2. Precision Vector System 

- Creates and manages per-layer precision vectors; for example, [8, 4, 4, 16, 8, 8, …]

3. Evaluation Pipeline

- Run the quantized model on dataset prompts and computes accuracy, latency, and 
memory footprint.



4. Fitness Module

- Convert evaluation metrics into a single numerical fitness score for optimization.

5. Evolutionary Search Engine

- Search for Pareto-optimal per-layer precision configurations through evolutionary 
optimization

6. Visualization

- Produce plots for Pareto frontier (accuracy vs memory), Fitness progression, Bit-width 
heatmaps and 3D trade-off

System Architecture



Data Flow

System Architecture

Evolutionary 
Engine

Generate 
a precision 

vector

Model Loader
Load Qwen2.5 and applies layer-wise quantization

Evaluation Pipeline
Run inference on dataset

“Apply these bits”

“Run these prompts”

Visualization tools
plots the result

Fitness Module
Calculate a fitness score

Return accuracy, latency, 
and memory usage

“Compute a fitness score 
from these metrics”

1.

2.

3.

4.
Decide which precision vectors survive, 

mutate or crossover to form the next 
generation

5. Terminate when generation limit is 
reached



Data Flow

System Architecture

Our components

- Evolutionary search algorithm 
- Precision vector system
- Custom quantization wrapper around 

HF models
- Dataset evaluation and timing pipeline
- LLM-based autograder
- Fitness scoring module
- Pareto frontier visualization
- Precision heatmap visualization

Open-Source Components

- HuggingFace Transformers
 (Model loading and inference)

- BitsAndBytes
 (4-bit, 8-bit quantization backend)

- Qwen2.5-7B-Instruct
(base LLM)

- PyTorch (GPU inference)

- Matplotlib/Seaborn



System Architecture

Experiments were run on 8x H200 
GPUs rented from Vast.ai

- 141GB VRAM per GPU
- 428.2 TFLOPS total 

performance
- Python multiprocessing library 

used for coordinating model 
runs and collecting results

Evolutionary Engine

Precision Vectors (Population)

GPU 0

Run MATH-50
Evaluate Acc/Lat

LLM Layer

GPU …

LLM Layer

LLM Layer

GPU 7

LLM Layer

LLM Layer

Evolutionary Fitness Aggregation + Selection

Run MATH-50
Evaluate Acc/Lat

Run MATH-50
Evaluate Acc/Lat

LLM Layer
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Dataset

- MATH-500: 500 problems across 
algebra, geometry, number theory, 
calculus

- All 500 samples test, no need 
for train/validation since we 
are using this for evaluation

- Columns are formatted in 
LaTeX

- "MATH-50": A subset created by our team for faster evaluation, due to resource 
constraints



Dataset Example 1: test/precalculus/807.json

Problem Solution Answer:
(3, π/2)

Subject:
Precalculus

Level:
2



Dataset Example 2: test/number_theory/515.json

Problem Solution Answer:
27

Subject:
Number Theory

Level:
3



Dataset Example 3: test/intermediate_algebra/1197.json

Problem Solution Answer:
3/56

Subject:
Intermediate Algebra

Level:
5



Dataset Example 4: test/geometry/434.json

Problem Solution Answer:
28

Subject:
Geometry

Level:
1



Dataset Example 5: test/counting_and_probability/134.json

Problem Solution Answer:
720

Subject:
Counting and 
Probability

Level:
4



Experimental Results



Experimental Setup

● Environment: Vast.ai, Pace/ICE
● GPU: 8x H200 (Vast.ai), 2x H200 (Pace/ICE)
● Model: Qwen2.5-7B-Instruct, Trinity-Mini, Mistral-7B
● Datasets: MATH-50
● Quantization Levels: 4, 8, 16 bits
● Metrics: Accuracy, inference latency, VRAM usage, loss

http://vast.ai
http://vast.ai


Experiment Screenshots (All models)

status of 
8 GPUs

generation 
progress



Experimental Result #1

● test/precalculus/807.json
● answer is (3, π/2)

● fully int8 quantized model 
produces the correct 
answer



Experimental Result #2

● test/intermediate_algebra/1
994.json

● answer is p - q

● fully int8 quantized model 
produces the correct 
answer



Experimental Result #3

● test/algebra/1072.json
● answer is 243/625

● fully int8 quantized model 
doesn't produce an answer

● half quantized model 
produces the wrong answer

● fully unquantized model 
produces the right answer



Model Selection

These preliminary experimental results show that the evaluated model is a good 
fit for our project

● The VRAM consumption is low enough to load multiple times on one GPU
○ This is necessary due to how our system produces quantized models

● Different quantization levels produce measurably different accuracy
○ Some models, though around the same size, produce extremely poor accuracy
○ These models would not show any meaningful results



● Total of 160 models were tested
● Steep downward slope on the 

graph
○ Accuracy increases with very slight 

increases in memory
○ Pareto frontier lies entirely on 

low-memory side

● Higher memory budgets do not 
guarantee better accuracy

Measurement Result #1 (QWEN): Loss vs. Memory



● Steep horizontal slope on the graph
○ Accuracy increases with very slight 

increases in memory
○ Pareto frontier lies entirely on low-loss 

side

● Trinity: Built for math purposes, 
causing conflict with dataset

○ But still evident decrease in loss, 
correlating to better/more accurate 
responses

Measurement Result #1 (Trinity): Loss vs. Memory



● Due to some constraints, the evolutionary 

search was terminated early

● Loss is not good, regardless of quantization

● Within the explored range, loss appears 

largely insensitive to memory, suggesting 

that performance may be more constrained 

by model

● This makes sense, as math is not what this 

model is designed for

Measurement Result #1 (Orchestrator) : Loss vs. Memory

Measurement Result #1 (Orchestrator): Loss vs. Memory

● Loss values remain nearly constant across most memory ranges

● Only marginal accuracy gains are achieved despite increasing memory

● Pareto frontier appears at the highest memory point with minimal loss improvement

● This indicates that the Orchestrator is not highly sensitive to memory scaling

● Performance is largely bounded by model–task compatibility rather than memory 
capacity



● In this result, quantization did not 

seem to help with loss (better large 

models)

● Distinct groups of memory with 

different sizes

Measurement Result #1 (Mistral) : Cross Entropy Loss 
vs. Memory

Measurement Result #1 (Orchestrator): Loss vs. Memory

● Loss values remain nearly constant across most memory ranges

● Only marginal accuracy gains are achieved despite increasing memory

● Pareto frontier appears at the highest memory point with minimal loss improvement

● This indicates that the Orchestrator is not highly sensitive to memory scaling

● Performance is largely bounded by model–task compatibility rather than memory 
capacity



● Steep downward slope, but with 

slight curve outward
○ Loss decreases as latency increases 

(very slightly)

● In our experimental results, the 

speed increase from quantization 

did not have a significant effect on 

trade off

Measurement Result #2 (QWEN): Loss vs. Latency



● Downward slope
○ Loss decreases as latency increases 

● Clear view of low latency and cross 

entropy loss for Trinity
○ Once again reliant on pretraining of the 

model

Measurement Result #2 (Trinity): Loss vs. Latency



● Most configurations operate within 

a very narrow low-latency range

● Cross entropy loss shows relatively 

high variability 

● The single high-latency point acts 

as an outlier

Measurement Result #2 (Orchestrator): Loss vs. Latency



● Vertical line, all models centered 

around about 25 ms latency

● Some outliers of higher latency for 

lower cross entropy than main 

group

Measurement Result #2 (Mistral): Loss vs. Latency



● Best pretrained models lie in 

low-latency, low-memory corner
○ Best configuration are faster and 

smaller, implying stronger quantization

● High-memory models consistently 

have higher latency without 

significant accuracy benefit

Measurement Result #3 (All models): Loss vs. Memory vs. Latency



● Most models do not have 

uniform bit widths
○ However, certain layers 

consistently get assigned 

similar bit sizes

● Best-performing models use 

non-uniform precision 

vectors

Measurement Result #4 (Qwen): Bit Allocation Heatmap



● Most models do not have 

uniform bit widths
○ However, certain layers 

consistently get assigned 

similar bit sizes

● Best-performing models use 

non-uniform precision 

vectors

Measurement Result #4 (Trinity): Bit Allocation Heatmap



● Most models do not have 

uniform bit widths
○ However, certain layers 

consistently get assigned 

similar bit sizes

● Best-performing models use 

non-uniform precision 

vectors

Measurement Result #4 (Orchestrator): Bit Allocation Heatmap



● Most models do not have 

uniform bit widths
○ However, certain layers 

consistently get assigned 

similar bit sizes

● Best-performing models use 

non-uniform precision 

vectors

Measurement Result #4 (Mistral): Bit Allocation 
Heatmap



Project Summary



Key Contributions 

Successfully created an automated tool that finds pareto-optimal layer 
quantization configurations for LLMs under arbitrary memory and latency 
constraints.  

LUT Table For Latency Estimation
Created a LUT table to enable fast, hardware-aware 
latency estimation.

Parallel GPU Evaluation
Parallel Evaluation across multiple GPUs for faster 
processing

Accurate VRAM Computation
Computed VRAM usage from parameter count x bit 
width

Pareto Frontier Visualization
Created and generated 2D/3D pareto frontier plots 
for easy referencing



Lessons Learned  

Accuracy vs Cross Entropy Evaluation

● Cross entropy loss - measures how much the model’s next-token predictions diverge 
from Math-500 gold solutions.

● Accuracy Metric - Directly computes correctness to see if generated answer is correct 
or not

Why Cross Entropy? - Sensitive to small perturbations in quantized weights providing 
smooth, stable optimization 

Why Accuracy Performed Better - The model wasn’t trained on Math-500, token level cross 
entropy loss produced noisy comparisons. There was really bad convergence overall. 
Accuracy offered a more clear ranking of “better vs worse” models. 



Lessons Learned - Preliminary Results (QWEN) 

Note: You can’t see the non-pareto points because they cluster around the Pareto Frontier! 



Lessons Learned - Preliminary Results (QWEN) 

Summary stats demonstrate that quantization is indeed happening and frontier had higher precision overall.



More Lessons Learned  

Hardware-Aware ML 
Model Engineering

● Predicting memory costs 
from GEMM kernels

● Working with memory 
bandwidth and quantization 
overhead

● GPU profiling with warm-up 
runs, CUDA synchronization, 
and caching

Understanding Layer 
Quantization

● Understanding which 
groupings of layers are 
quantization sensitive 
through evolutionary testing

Developing an LLM 
Evaluation Pipeline

● GPU parallelism
● Cache aware
● Stateful - not needing to load 

a new model every time due 
to high latency costs



Future Improvements

● Pluggable APIs -  Currently our model requires a lot of extra code
○ bitsandbytes currently requires its own file for layer quantization

■ Potentially could create an API that allows you to pass in a quantization 
scheme (1 bit, 2 bit, etc). 

○ Additional APIs for figures and results
■ Adding an API where you input memory or latency budgets and get returned 

a clear quantization scheme 
● Limited generalizability across diverse model architectures

○ Applying the method to new models requires substantial model-specific 
implementation

● Clearer results - graphs can tell a story but there must be a better way to present the 
different layer schemes. 



README Explanation

● Project Overview & Technical Stack: Describes AutoLLMTuner as an evolutionary 
algorithm framework for LLM quantization, 

○ Detailed information about datasets (MATH-500), performance measurement tools (BitsAndBytes, hardware 
benchmarking, caching), and external resources (Qwen2.5-7B model, frameworks)

● Setup & Usage: Provides installation requirements, configuration files explanation, and 
instructions for running experiments

○ Hardware benchmarking, evolutionary search, HPC execution, visualization generation
● Experimental Results & Analysis: Comprehensive analysis of test runs showing that 

optimal solutions achieve 94% accuracy at 5.51 GB memory (vs 12.49 GB baseline),
○ Detailed performance metrics, Pareto analysis, bit allocation strategies, and visualization explanations

● Code Architecture: Documents the project structure with core components (evolutionary 
algorithm, quantization backend, visualization tools) 

○ Explains how evaluation, frontier computation, and results generation are integrated throughout the pipeline



Open Source References

● HuggingFace Transformers
 (Model loading and inference) - https://huggingface.co/docs/transformers/en/index

● HuggingFace MATH500

(Dataset for testing) - https://huggingface.co/datasets/HuggingFaceH4/MATH-500

● BitsAndBytes
 (4-bit, 8-bit quantization backend) - https://huggingface.co/docs/bitsandbytes/en/index

● Qwen2.5-7B-Instruct
(base LLM) - https://huggingface.co/Qwen/Qwen2.5-7B-Instruct

● PyTorch (GPU inference) - https://pytorch.org/

● Matplotlib - https://matplotlib.org/

● Seaborn - https://seaborn.pydata.org/



Q&A

Thank You!!


